EROSION AND SEDIMENT CONTROL PLAN AREA I BURN PIT – SOLID WASTE MANAGEMENT UNIT (SMWU) 4.8 SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA # **Prepared for:** **The Boeing Company** 5800 Woolsey Canyon Road MC: 033-T487 Canoga Park, California 91304-1148 Prepared by: Haley & Aldrich, Inc. Tucson, CA File No. 2006-734/M473 August 2006 Haley & Aldrich, Inc. 326 South Wilmot Suite A200 Tucson, AZ 85711-4029 Tel: 520.326.1898 Fax: 520.747.3491 HaleyAldrich.com 11 August 2006 File No. 20060-725 The Boeing Company 5800 Woolsey Canyon Road MC: 033-T487 Canoga Park, California 91304-1148 Attention: Mr. Art Lenox Subject: Erosion and Sediment Control Plan for Area I Burn Pit Solid Waste Management Unit (SWMU) 4.8 Santa Susana Field Laboratory Ventura County, California **OFFICES** Boston Massachusetts Cleveland *Ohio* Dayton *Ohio* Detroit *Michigan* Hartford *Connecticut* Kansas City Kansas Los Angeles *California* Manchester New Hampshire New York New York Parsippany New Jersey Portland *Maine* Providence Rhode Island Rochester New York San Diego *California* Santa Barbara California Washington District of Columbia Dear Mr. Lenox: Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this Erosion and Sediment Control Plan in response to a 26 July 2006 letter from the California Department of Toxic Substances Control (DTSC, 2006) regarding the Area I Burn Pit – Solid Waste Management Unit (SWMU) 4.8 at the Santa Susana Field Laboratory (SSFL), Ventura County, California (Site). Specifically, DTSC requested that an erosion and sediment control plan for the pre- and post-interim measure (IM) activities be prepared for the Site. #### INTRODUCTION A limited soil removal and data collection program to characterize existing conditions and reduce the possibility of migration of dioxins, chromium, and other co-located chemicals in soils at the Site has been developed as an IM. The IM is described in the *Revised Interim Measures Work Plan for the Area I Burn Pit, Solid Waste Management Unit (SWMU) 4.8, Santa Susana Field Laboratory, Ventura County, California,* (IM Work Plan) by Haley & Aldrich, dated 9 June 2006. In the event that limited removal of soils does not occur until after the 2006-2007 rainy season, the appropriate erosion and sediment contol measures outlined in this Erosion and Sediment Control Plan will be implemented prior to the rainy season. Further, post-IM erosion and sediment control measures are provided herein. Details of the proposed standard storm water best management practices (BMPs) from the *California Stormwater BMP Handbook* (CASQA, 2003) are included in Appendix A. #### FACILITY AND INTERIM MEASURES DESCRIPTION The Area I Burn Pit (SWMU 4.8) is approximately 5.8 acres in size and is located in the southern portion of Area I of the SSFL (Figure 1). The Thermal Treatment Facility (TTF) Interim Status Facility lies within the Burn Pit area or SWMU; however, closure activities for the TTF Interim Status Facility are not directly addressed in the IM Work Plan (Haley & Aldrich, 2006) and will be described in a separate Closure Plan. Site features as well as the TTF Interim Status Facility and Area I Burn Pit are described below. The Boeing Company 11 August 2006 Page 2 #### **Site Features** Elevations across the Site range from approximately 1,785 to 1,730 feet above mean sea level (MSL) and the Site slopes generally toward the southeast. The Perimeter Pond (SWMU 4.17) is approximately 60 feet east of the Area I Burn Pit eastern boundary. Surface water flow is intermittent, and approximately 90 percent of the surface water flow at the Area I Burn Pit is toward the southeast near Outfall 011. Surface water in the far western portion of the Site flows into the western drainages. Surface water from Area I Burn Pit, Outfall 011, and the western drainages, in turn, flows south to Outfall 001. Surface water discharges from Outfall 001 flow off-Site into Bell Creek and subsequently discharge into the Los Angeles River. The Site is situated on a south-facing slope and includes annual and perennial grasses, weeds, and shrubs with intermittent areas of exposed earth and bedrock outcrops. Dirt roads exist along the northern and southern Site boundaries and loop around the west-central portion of the Site. Remnants of an asphalt pavement roadway extend from Area I Road north of the Site into the former Control Center area in the northeast portion of the Site. ### **TTF Interim Status Facility** The TTF Interim Status Facility lies near the center of the eastern portion of SWMU 4.8 and formerly consisted of two concrete pads (Burn Pit 2 and Concrete Pad 2) surrounded by earthen berms (Figure 1). The Interim Status Facility includes the concrete pads identified as "Burn Pit 2" and "Concrete Pad 2" and the surrounding berms. The TTF Interim Status Facility was used for evacuation of pressurized cylinders and destruction of energetic wastes (such as nitroglycerin and ammonium perchlorate), plasticizers, and binders (EMCON, 1990). # Area 1 Burn Pit (SWMU 4.8) The area surrounding the TTF Interim Status Facility (outside of the berms and former concrete pads) is included in SWMU 4.8. The SWMU formerly consisted of several earthen and concrete-lined ponds, a control center, and two explosives storage sheds. The SMWU was primarily used for the destruction of explosive and flammable wastes by open burning (Groundwater Resource Consultants, Inc. 1992). Wastes treated in the SWMU primarily included solvents and fuels generated from other areas at the SSFL (SAIC, 1994). #### **Planned Interim Measure Excavations** The mitigation approach outlined in the IM Work Plan (Haley & Aldrich, 2006) includes excavation of shallow soils in three locations, identified as Excavations A, B, and C (Figure 1). Excavation will be performed with a backhoe or other similar equipment. Excavated soils will be temporarily stockpiled or direct-loaded into trucks for off-Site disposal. The existing roads will be used for truck ingress and egress. Appropriate personnel, equipment, and vehicle decontamination procedures will be implemented during IM activities. IM soil removal completion will be determined based on cleanup goals as having been met, demonstrated by laboratory analytical results of collected soil samples or exposure of competent bedrock in the excavations. ## **EROSION AND SEDIMENT CONTROL** For the Area I Burn Pit, the objectives of the erosion and sediment control measures are: During the pre-IM rainy season, minimize rainfall and storm water runoff from detaching and transporting soil particles from undisturbed areas of known chemical impacts. - During the pre-IM rainy season, minimize runoff from depositing sediment onto undisturbed areas of known chemical impacts. - During the post-IM rainy season, minimize runoff from flowing across disturbed areas. - At the completion of the IM activities, ensure that permanent erosion control is in-place and functional. - Remove sediment from on-Site runoff. Erosion and sediment control measures are discussed in detail below. BMP designations in parentheses correspond to standard BMP descriptions from the *California Stormwater BMP Handbook* (CASQA, 2003) included in Appendix A. #### **Erosion Control** Erosion control, or soil stabilization, includes measures that are designed to prevent soil particles from becoming suspended in storm water runoff. Erosion control BMPs are installed to protect the ground surface by covering and/or binding the soil particles. Final stabilization is considered to be achieved when a uniform vegetative cover equivalent to 70 percent of the native background vegetation coverage has been established or equivalent stabilization measures have been employed. For the pre-IM rainy season, the following erosion control/soil stabilization measures will be implemented (see Figure 2): - 1. Preserve existing vegetation to the extent feasible (EC-2). - 2. Install 1-inch minus aggregate on the existing dirt haul roads (TC-2). - 3. Install permeable geotextile fabric (EC-7) over the following areas, extending approximately 10 feet beyond the area boundaries: - a. Excavation A; approximately 4,080 square feet - b. Excavation B; approximately 1,320 square feet - c. Excavation C; approximately 16,185 square feet - d. TTF (Burn Pit 2); approximately 1,990 square feet - e. TTF (Concrete Pad 2); approximately 4,850 square feet Edges of the geotextile fabric will be anchored within trenches at the tops of slopes and staples, anchor pins, or wooden stakes at all other edges. - 4. Install sandbag barriers along the up-slope and cross-slope sides of the geotextile-covered areas (SE-8). - 5. Install silt fencing and straw wattles (fiber rolls) across areas of concentrated runoff (SE-1, SE-5). - 6. Apply soil stabilizing measures such as hydromulch or soil binding compounds to the uncovered ground surfaces within the Area I Burn Pit (EC-3, EC-5). - 7. Implement and maintain temporary soil stabilization measures as needed throughout the rainy season. The Boeing Company 11 August 2006 Page 4 For the post-IM rainy season, the following erosion control/soil stabilization measures will be implemented (see Figure 3): - 1. Preserve existing vegetation to the extent feasible (EC-2). - 2. Maintain aggregate on haul roads (TC-2). - 3. Backfill Excavations A, B, and C with clean, approved, on-Site borrow soils or regrade areas around excavation perimeters to eliminate excavation sidewalls and allow drainage. - 4. Maintain geotextile fabric and sandbags at TTF areas until field activities resume (EC-7, SE-8). - 5. Maintain silt fencing and straw wattles across areas of concentrated runoff until field activities resume (SE-1, SE-5). - 5. Seed areas deemed substantially complete (EC-4). - 6. Implement and maintain temporary soil stabilization measures as needed throughout the rainy season. #### **Sediment Control** Sediment control measures are employed to intercept and settle out suspended
soil particles in storm water runoff, thereby reducing the quantity of sediment entering the storm drain network and leaving the Site. For the pre-IM rainy season, the following sediment control measures will be implemented (see Figure 2): - 1. Install silt fencing and straw wattles along perimeter run-on and runoff areas (SE-1, SE-5). - 2. Install Type-3 (gravel bag barrier) storm drain inlet protection devices (SE-10). - 3. Inspect and maintain temporary sediment control throughout the rainy season. For the post-IM rainy season, the above sediment control BMPs will be inspected and maintained. # BMP MAINTENANCE, INSPECTION, AND REPAIR Inspection and maintenance of BMPs will be performed on a routine basis. Maintenance includes repairing or replacing nonfunctioning BMPs, or adding BMPs as needed in areas that are potentially contributing to soil erosion or off-Site sediment transport. Generally, BMP inspections will be conducted as follows: - Prior to a forecast storm - After a rain event that causes runoff from the Area I Burn Pit Site - At 24-hour intervals during extended rain events - Weekly during the rainy seasons The Boeing Company 11 August 2006 Page 5 - Biweekly during non-rainy season field activities - At any other times or intervals deemed necessary Records of inspections will be submitted to Boeing within 24 hours of inspection. A tracking or follow-up procedure shall follow any inspection that identifies deficiencies in the BMPs. #### PROJECT SCHEDULE Implementation of tasks specified in the Erosion and Sediment Control Plan for Area I Burn Pit Solid Waste Management Unit (SWMU) 4.8 are contingent upon review and approval by DTSC. A detailed schedule for implementation of IM activities, including tasks specified in the Erosion and Sediment Control Plan, will be developed and submitted to DTSC for review and approval. We appreciate the opportunity to provide services on this project. Please do not hesitate to call if you have any questions or comments. Sincerely yours, HALEY & ALDRICH, INC. Richard M. Farson, P.E. Ald ICCL Senior Engineer Sheldon D. Clark Vice President **Enclosures:** References Figure 1 – Area I Burn Pit Site Plan Figure 2 – Area I Burn Pit Pre-IM Erosion and Sediment Control BMPs Figure 3 - Area I Burn Pit Post-IM Erosion and Sediment Control BMPs Appendix A – Excerpts from California Stormwater BMP Handbook $G:\label{lem:control} G:\label{lem:control} G:\label{lem:control} Plan.\label{lem:control} Area\ I\ ES\ Control\ Plan.\ doc$ #### **REFERENCES** - 1. CASQA, 2003. California Stormwater BMP Handbook. - Department of Toxic Substances Control (DTSC), 2006. Letter from James M. Pappas, DTSC, to Arthur J. Lenox, The Boeing Company, re: "Request for Interim Measures Work Plan (IM), Thermal Treatment Facility and Area I Burn Pit Solid Waste Management Unit (SWMU). CAD 093 365 435, Santa Susana Field Laboratory, Ventura County, California." 27 January 2006. - 3. EMCON Associates (EMCON), 1990. Thermal Treatment Operations Plan, Rockwell International Corporation, Santa Susana Field Laboratory-Area I, Thermal Treatment Facility. 23 May 1990. - 4. Groundwater Resource Consultants, Inc., 1992. Sampling and Analysis Plan, Area I Thermal Treatment Facility Santa Susana Field Laboratory, Rocketdyne Division, Rockwell International Corporation, Ventura County, California. 08 January 1992. - 5. Haley & Aldrich, Inc., 2006. Revised Interim Measures Work Plan for the Area I Burn Pit, Solid Waste Management Unit (SWMU) 4.8, Santa Susana Field Laboratory, Ventura County, California. 9 June 2006. - 6. SAIC, 1994. Final RCRA Facility Assessment Report for Rockwell International Corporation, Rocketdyne Division, Santa Susana Field Laboratory, Ventura County, California. May 1994. # APPENDIX A **Excerpts from California Stormwater BMP Handbook** # Preservation Of Existing Vegetation EC-2 # Objectives EC Erosion Control SE Sediment Control $\overline{\mathbf{V}}$ ✓ TR Tracking Control WE Wind Erosion Control NS Non-Stormwater WM Waste Management and Materials Pollution Control Management Control ### Legend: ☑ Primary Objective Secondary Objective # **Description and Purpose** Carefully planned preservation of existing vegetation minimizes the potential of removing or injuring existing trees, vines, shrubs, and grasses that protect soil from erosion. # **Suitable Applications** Preservation of existing vegetation is suitable for use on most projects. Large project sites often provide the greatest opportunity for use of this BMP. Suitable applications include the following: - Areas within the site where no construction activity occurs, or occurs at a later date. This BMP is especially suitable to multi year projects where grading can be phased. - Areas where natural vegetation exists and is designated for preservation. Such areas often include steep slopes, watercourse, and building sites in wooded areas. - Areas where local, state, and federal government require preservation, such as vernal pools, wetlands, marshes, certain oak trees, etc. These areas are usually designated on the plans, or in the specifications, permits, or environmental documents. - Where vegetation designated for ultimate removal can be temporarily preserved and be utilized for erosion control and sediment control. # **Targeted Constituents** Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** None # EC-2 Preservation Of Existing Vegetation #### Limitations - Requires forward planning by the owner/developer, contractor, and design staff. - Limited opportunities for use when project plans do not incorporate existing vegetation into the site design. - For sites with diverse topography, it is often difficult and expensive to save existing trees while grading the site satisfactory for the planned development. # **Implementation** The best way to prevent erosion is to not disturb the land. In order to reduce the impacts of new development and redevelopment, projects may be designed to avoid disturbing land in sensitive areas of the site (e.g., natural watercourses, steep slopes), and to incorporate unique or desirable existing vegetation into the site's landscaping plan. Clearly marking and leaving a buffer area around these unique areas during construction will help to preserve these areas as well as take advantage of natural erosion prevention and sediment trapping. Existing vegetation to be preserved on the site must be protected from mechanical and other injury while the land is being developed. The purpose of protecting existing vegetation is to ensure the survival of desirable vegetation for shade, beautification, and erosion control. Mature vegetation has extensive root systems that help to hold soil in place, thus reducing erosion. In addition, vegetation helps keep soil from drying rapidly and becoming susceptible to erosion. To effectively save existing vegetation, no disturbances of any kind should be allowed within a defined area around the vegetation. For trees, no construction activity should occur within the drip line of the tree. # Timing Provide for preservation of existing vegetation prior to the commencement of clearing and grubbing operations or other soil disturbing activities in areas where no construction activity is planned or will occur at a later date. ### Design and Layout - Mark areas to be preserved with temporary fencing. Include sufficient setback to protect roots. - Orange colored plastic mesh fencing works well. - Use appropriate fence posts and adequate post spacing and depth to completely support the fence in an upright position. - Locate temporary roadways, stockpiles, and layout areas to avoid stands of trees, shrubs, and grass. - Consider the impact of grade changes to existing vegetation and the root zone. - Maintain existing irrigation systems where feasible. Temporary irrigation may be required. - Instruct employees and subcontractors to honor protective devices. Prohibit heavy equipment, vehicular traffic, or storage of construction materials within the protected area. # Preservation Of Existing Vegetation EC-2 #### Costs There is little cost associated with preserving existing vegetation if properly planned during the project design, and these costs may be offset by aesthetic benefits that enhance property values. During construction, the cost for preserving existing vegetation will likely be less than the cost of applying erosion and sediment controls to the disturbed area. Replacing vegetation inadvertently destroyed during construction can be extremely expensive, sometimes in excess of \$10,000 per tree. # **Inspection and Maintenance** During construction, the limits of disturbance should remain clearly marked at all times. Irrigation or maintenance of existing vegetation should be described in the landscaping plan. If damage to protected trees still occurs, maintenance guidelines described below should be followed: - Verify that protective measures remain in place. Restore damaged protection measures immediately. - Serious tree injuries shall be attended to by an arborist. - Damage to the crown, trunk, or root system of a retained tree shall be repaired immediately. - Trench as far from tree trunks as possible, usually outside of the tree drip line or canopy. Curve trenches around trees to avoid large roots or root concentrations. If roots are encountered, consider tunneling under them. When trenching or tunneling near or under trees to be retained, place tunnels at least 18 in. below the ground surface, and not below the tree center to minimize impact on the roots. - Do not leave tree roots exposed to air. Cover exposed roots with soil as soon as possible. If soil covering is not practical, protect exposed roots with wet burlap or peat moss until the tunnel or trench is ready for backfill. - Cleanly remove the ends of damaged roots with a smooth cut. - Fill trenches and tunnels as soon as possible. Careful filling and tamping will
eliminate air spaces in the soil, which can damage roots. - If bark damage occurs, cut back all loosened bark into the undamaged area, with the cut tapered at the top and bottom and drainage provided at the base of the wood. Limit cutting the undamaged area as much as possible. - Aerate soil that has been compacted over a trees root zone by punching holes 12 in. deep with an iron bar, and moving the bar back and forth until the soil is loosened. Place holes 18 in. apart throughout the area of compacted soil under the tree crown. - Fertilization - Fertilize stressed or damaged broadleaf trees to aid recovery. - Fertilize trees in the late fall or early spring. # EC-2 Preservation Of Existing Vegetation - Apply fertilizer to the soil over the feeder roots and in accordance with label instructions, but never closer than 3 ft to the trunk. Increase the fertilized area by one-fourth of the crown area for conifers that have extended root systems. - Retain protective measures until all other construction activity is complete to avoid damage during site cleanup and stabilization. #### References County of Sacramento Tree Preservation Ordinance, September 1981. Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992. Water Quality Management Plan for The Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988. | Objectives | | | | |------------|----------------------|---|--| | EC | Erosion Control | X | | | SE | Sediment Control | X | | | TC | Tracking Control | ✓ | | | WE | Wind Erosion Control | | | | NC | Non-Stormwater | | | Management Control Waste Management and Materials Pollution Control # Legend: NS - Primary Objective - ☑ Secondary Objective # **Description and Purpose** Access roads, subdivision roads, parking areas, and other onsite vehicle transportation routes should be stabilized immediately after grading, and frequently maintained to prevent erosion and control dust. # **Suitable Applications** This BMP should be applied for the following conditions: - Temporary Construction Traffic: - Phased construction projects and offsite road access - Construction during wet weather - Construction roadways and detour roads: - Where mud tracking is a problem during wet weather - Where dust is a problem during dry weather - Adjacent to water bodies - Where poor soils are encountered # Limitations The roadway must be removed or paved when construction is complete. # **Targeted Constituents** \checkmark Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics ### **Potential Alternatives** None # TC-2 Stabilized Construction Roadway - Certain chemical stabilization methods may cause stormwater or soil pollution and should not be used. See WE-1, Wind Erosion Control. - Management of construction traffic is subject to air quality control measures. Contact the local air quality management agency. - Materials will likely need to be removed prior to final project grading and stabilization. - Use of this BMP may not be applicable to very short duration projects. # **Implementation** ### General Areas that are graded for construction vehicle transport and parking purposes are especially susceptible to erosion and dust. The exposed soil surface is continually disturbed, leaving no opportunity for vegetative stabilization. Such areas also tend to collect and transport runoff waters along their surfaces. During wet weather, they often become muddy quagmires that generate significant quantities of sediment that may pollute nearby streams or be transported offsite on the wheels of construction vehicles. Dirt roads can become so unstable during wet weather that they are virtually unusable. Efficient construction road stabilization not only reduces onsite erosion but also can significantly speed onsite work, avoid instances of immobilized machinery and delivery vehicles, and generally improve site efficiency and working conditions during adverse weather # Installation/Application Criteria Permanent roads and parking areas should be paved as soon as possible after grading. As an alternative where construction will be phased, the early application of gravel or chemical stabilization may solve potential erosion and stability problems. Temporary gravel roadway should be considered during the rainy season and on slopes greater than 5%. Temporary roads should follow the contour of the natural terrain to the maximum extent possible. Slope should not exceed 15%. Roadways should be carefully graded to drain transversely. Provide drainage swales on each side of the roadway in the case of a crowned section or one side in the case of a super elevated section. Simple gravel berms without a trench can also be used. Installed inlets should be protected to prevent sediment laden water from entering the storm sewer system (SE-10, Storm Drain Inlet Protection). In addition, the following criteria should be considered. - Road should follow topographic contours to reduce erosion of the roadway. - The roadway slope should not exceed 15%. - Chemical stabilizers or water are usually required on gravel or dirt roads to prevent dust (WE-1, Wind Erosion Control). - Properly grade roadway to prevent runoff from leaving the construction site. - Design stabilized access to support heaviest vehicles and equipment that will use it. # Stabilized Construction Roadway TC-2 - Stabilize roadway using aggregate, asphalt concrete, or concrete based on longevity, required performance, and site conditions. The use of cold mix asphalt or asphalt concrete (AC) grindings for stabilized construction roadway is not allowed. - Coordinate materials with those used for stabilized construction entrance/exit points. - If aggregate is selected, place crushed aggregate over geotextile fabric to at least 12 in. depth. A crushed aggregate greater than 3 in. but smaller than 6 in. should be used. # **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, impact weekly during the rainy season and of two-week intervals in the non-rainy season to verify continued BMP implementation. - Keep all temporary roadway ditches clear. - When no longer required, remove stabilized construction roadway and re-grade and repair slopes. - Periodically apply additional aggregate on gravel roads. - Active dirt construction roads are commonly watered three or more times per day during the dry season. #### Costs Gravel construction roads are moderately expensive, but cost is often balanced by reductions in construction delay. No additional costs for dust control on construction roads should be required above that needed to meet local air quality requirements. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Coastal Nonpoint Pollution Control Program; Program Development and Approval Guidance, Working Group, Working Paper; USEPA, April 1992. Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995. Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992. Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992. # TC-2 Stabilized Construction Roadway Virginia Erosion and Sedimentation Control Handbook, Virginia Department of Conservation and Recreation, Division of Soil and Water Conservation, 1991. Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988. # Description and Purpose Mattings of natural materials are used to cover the soil surface to reduce erosion from rainfall impact, hold soil in place, and absorb and hold moisture near the soil surface. Additionally, matting may be used to stabilize soils until vegetation is established. # **Suitable Applications** Mattings are commonly applied on short, steep slopes where erosion hazard is high and vegetation will be slow to establish. Mattings are also used on stream banks where moving water at velocities between 3 ft/s and 6 ft/s are likely to wash out new vegetation, and in areas where the soil surface is disturbed and where existing vegetation has been removed. Matting may also be used when seeding cannot occur (e.g., late season construction and/or the arrival of an early rain season). Erosion control matting should be considered when the soils are fine grained and potentially erosive. These measures should be considered in the following situations. - Steep slopes, generally steeper than 3:1 (H:V) - Slopes where the erosion potential is high - Slopes and disturbed soils where mulch must be anchored - Disturbed areas where plants are slow to develop - Channels with flows exceeding 3.3 ft/s # **Objectives** EC Erosion Control 3 SE Sediment Control TR Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control Waste Management and Materials Pollution Control Legend: ☑ Primary Objective Secondary Objective # **Targeted Constituents** Sediment \square Nutrients Trash Metals Bacteria Oil and Grease Organics ### **Potential Alternatives** EC-3 Hydraulic Mulch EC-4 Hydroseeding EC-5 Soil Binders EC-6 Straw Mulch EC-8 Wood Mulching - Channels to be vegetated -
Stockpiles - Slopes adjacent to water bodies of Environmentally Sensitive Areas (ESAs) ### Limitations - Properly installed mattings provide excellent erosion control but do so at relatively high cost. This high cost typically limits the use of mattings to areas of concentrated channel flow and steep slopes. - Mattings are more costly than other BMP practices, limiting their use to areas where other BMPs are ineffective (e.g. channels, steep slopes). - Installation is critical and requires experienced contractors. The contractor should install the matting material in such a manner that continuous contact between the material and the soil occurs. - Geotextiles and Mats may delay seed germination, due to reduction in soil temperature. - Blankets and mats are generally not suitable for excessively rocky sites or areas where the final vegetation will be moved (since staples and netting can catch in movers). - Blankets and mats must be removed and disposed of prior to application of permanent soil stabilization measures. - Plastic sheeting is easily vandalized, easily torn, photodegradable, and must be disposed of at a landfill. - Plastic results in 100% runoff, which may cause serious erosion problems in the areas receiving the increased flow. - The use of plastic should be limited to covering stockpiles or very small graded areas for short periods of time (such as through one imminent storm event) until alternative measures, such as seeding and mulching, may be installed. - Geotextiles, mats, plastic covers, and erosion control covers have maximum flow rate limitations; consult the manufacturer for proper selection. - Not suitable for areas that have heavy foot traffic (tripping hazard) e.g., pad areas around buildings under construction. #### Implementation ### Material Selection Organic matting materials have been found to be effective where re-vegetation will be provided by re-seeding. The choice of matting should be based on the size of area, side slopes, surface conditions such as hardness, moisture, weed growth, and availability of materials. The following natural and synthetic mattings are commonly used: #### Geotextiles - Material should be a woven polypropylene fabric with minimum thickness of 0.06 in., minimum width of 12 ft and should have minimum tensile strength of 150 lbs (warp), 80 lbs (fill) in conformance with the requirements in ASTM Designation: D 4632. The permittivity of the fabric should be approximately 0.07 sec⁻¹ in conformance with the requirements in ASTM Designation: D4491. The fabric should have an ultraviolet (UV) stability of 70 percent in conformance with the requirements in ASTM designation: D4355. Geotextile blankets must be secured in place with wire staples or sandbags and by keying into tops of slopes to prevent infiltration of surface waters under geotextile. Staples should be made of minimum 11 gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown. - Geotextiles may be reused if they are suitable for the use intended. #### Plastic Covers - Plastic sheeting should have a minimum thickness of 6 mils, and must be keyed in at the top of slope and firmly held in place with sandbags or other weights placed no more than 10 ft apart. Seams are typically taped or weighted down their entire length, and there should be at least a 12 in. to 24 in. overlap of all seams. Edges should be embedded a minimum of 6 in. in soil. - All sheeting must be inspected periodically after installation and after significant rainstorms to check for erosion, undermining, and anchorage failure. Any failures must be repaired immediately. If washout or breakages occur, the material should be re-installed after repairing the damage to the slope. ### Erosion Control Blankets/Mats - Biodegradable rolled erosion control products (RECPs) are typically composed of jute fibers, curled wood fibers, straw, coconut fiber, or a combination of these materials. In order for an RECP to be considered 100% biodegradable, the netting, sewing or adhesive system that holds the biodegradable mulch fibers together must also be biodegradable. - **Jute** is a natural fiber that is made into a yarn that is loosely woven into a biodegradable mesh. It is designed to be used in conjunction with vegetation and has longevity of approximately one year. The material is supplied in rolled strips, which should be secured to the soil with U-shaped staples or stakes in accordance with manufacturers' recommendations. - Excelsior (curled wood fiber) blanket material should consist of machine produced mats of curled wood excelsior with 80 percent of the fiber 6 in. or longer. The excelsior blanket should be of consistent thickness. The wood fiber must be evenly distributed over the entire area of the blanket. The top surface of the blanket should be covered with a photodegradable extruded plastic mesh. The blanket should be smolder resistant without the use of chemical additives and should be non-toxic and non-injurious to plant and animal life. Excelsior blankets should be furnished in rolled strips, a minimum of 48 in. wide, and should have an average weight of 0.8 lb/yd², ±10 percent, at the time of manufacture. Excelsior blankets must be secured in place with wire staples. Staples should be made of minimum 11 gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown. - **Straw blanket** should be machine produced mats of straw with a lightweight biodegradable netting top layer. The straw should be attached to the netting with biodegradable thread or glue strips. The straw blanket should be of consistent thickness. The straw should be evenly distributed over the entire area of the blanket. Straw blanket should be furnished in rolled strips a minimum of 6.5 ft wide, a minimum of 80 ft long and a minimum of 0.5 lb/yd². Straw blankets must be secured in place with wire staples. Staples should be made of minimum 11 gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown. - Wood fiber blanket is composed of biodegradable fiber mulch with extruded plastic netting held together with adhesives. The material is designed to enhance re-vegetation. The material is furnished in rolled strips, which must be secured to the ground with Ushaped staples or stakes in accordance with manufacturers' recommendations. - Coconut fiber blanket should be a machine produced mat of 100 percent coconut fiber with biodegradable netting on the top and bottom. The coconut fiber should be attached to the netting with biodegradable thread or glue strips. The coconut fiber blanket should be of consistent thickness. The coconut fiber should be evenly distributed over the entire area of the blanket. Coconut fiber blanket should be furnished in rolled strips with a minimum of 6.5 ft wide, a minimum of 80 ft. long and a minimum of 0.5 lb/yd². Coconut fiber blankets must be secured in place with wire staples. Staples should be made of minimum 11 gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown. - Coconut fiber mesh is a thin permeable membrane made from coconut or corn fiber that is spun into a yarn and woven into a biodegradable mat. It is designed to be used in conjunction with vegetation and typically has longevity of several years. The material is supplied in rolled strips, which must be secured to the soil with U-shaped staples or stakes in accordance with manufacturers' recommendations. - **Straw coconut fiber blanket** should be machine produced mats of 70 percent straw and 30 percent coconut fiber with a biodegradable netting top layer and a biodegradable bottom net. The straw and coconut fiber should be attached to the netting with biodegradable thread or glue strips. The straw coconut fiber blanket should be of consistent thickness. The straw and coconut fiber should be evenly distributed over the entire area of the blanket. Straw coconut fiber blanket should be furnished in rolled strips a minimum of 6.5 ft wide, a minimum of 80 ft long and a minimum of 0.5 lb/yd². Straw coconut fiber blankets must be secured in place with wire staples. Staples should be made of minimum 11 gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown. - Non-biodegradable RECPs are typically composed of polypropylene, polyethylene, nylon or other synthetic fibers. In some cases, a combination of biodegradable and synthetic fibers is used to construct the RECP. Netting used to hold these fibers together is typically nonbiodegradable as well. - **Plastic netting** is a lightweight biaxially oriented netting designed for securing loose mulches like straw or paper to soil surfaces to establish vegetation. The netting is photodegradable. The netting is supplied in rolled strips, which must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations. - **Plastic mesh** is an open weave geotextile that is composed of an extruded synthetic fiber woven into a mesh with an opening size of less than ¼ in. It is used with revegetation or may be used to secure loose fiber such as straw to the ground. The material is supplied in rolled strips, which must be secured to the soil with U-shaped staples or stakes in accordance with manufacturers' recommendations. - Synthetic fiber with netting is a mat that is composed of durable synthetic fibers treated to resist chemicals and ultraviolet light. The mat is a dense, three dimensional mesh of synthetic (typically polyolefin) fibers stitched between two polypropylene nets. The mats are designed to be re-vegetated and provide a permanent composite system of soil, roots, and geomatrix. The material is furnished in rolled strips, which must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations. - **Bonded synthetic fibers** consist of a three dimensional geomatrix nylon (or other synthetic) matting. Typically it has more than 90 percent open area, which facilitates root growth. It's tough root reinforcing system
anchors vegetation and protects against hydraulic lift and shear forces created by high volume discharges. It can be installed over prepared soil, followed by seeding into the mat. Once vegetated, it becomes an invisible composite system of soil, roots, and geomatrix. The material is furnished in rolled strips that must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations. - Combination synthetic and biodegradable RECPs consist of biodegradable fibers, such as wood fiber or coconut fiber, with a heavy polypropylene net stitched to the top and a high strength continuous filament geomatrix or net stitched to the bottom. The material is designed to enhance re-vegetation. The material is furnished in rolled strips, which must be secured with U-shaped staples or stakes in accordance with manufacturers' recommendations. # Site Preparation - Proper site preparation is essential to ensure complete contact of the blanket or matting with the soil. - Grade and shape the area of installation. - Remove all rocks, clods, vegetation or other obstructions so that the installed blankets or mats will have complete, direct contact with the soil. - Prepare seedbed by loosening 2 to 3 in. of topsoil. #### Seeding Seed the area before blanket installation for erosion control and revegetation. Seeding after mat installation is often specified for turf reinforcement application. When seeding prior to blanket # **Geotextiles and Mats** installation, all check slots and other areas disturbed during installation must be re-seeded. Where soil filling is specified, seed the matting and the entire disturbed area after installation and prior to filling the mat with soil. Fertilize and seed in accordance with seeding specifications or other types of landscaping plans. When using jute matting on a seeded area, apply approximately half the seed before laying the mat and the remainder after laying the mat. The protective matting can be laid over areas where grass has been planted and the seedlings have emerged. Where vines or other ground covers are to be planted, lay the protective matting first and then plant through matting according to design of planting. ### Check Slots Check slots are made of glass fiber strips, excelsior matting strips or tight folded jute matting blanket or strips for use on steep, highly erodible watercourses. The check slots are placed in narrow trenches 6 to 12 in. deep across the channel and left flush with the soil surface. They are to cover the full cross section of designed flow. # Laying and Securing Matting - Before laying the matting, all check slots should be installed and the friable seedbed made free from clods, rocks, and roots. The surface should be compacted and finished according to the requirements of the manufacturer's recommendations. - Mechanical or manual lay down equipment should be capable of handling full rolls of fabric and laying the fabric smoothly without wrinkles or folds. The equipment should meet the fabric manufacturer's recommendations or equivalent standards. ### Anchoring - U-shaped wire staples, metal geotextile stake pins, or triangular wooden stakes can be used to anchor mats and blankets to the ground surface. - Wire staples should be made of minimum 11 gauge steel wire and should be U-shaped with 8 in. legs and 2 in. crown. - Metal stake pins should be 0.188 in. diameter steel with a 1.5 in. steel washer at the head of the pin, and 8 in. in length. - Wire staples and metal stakes should be driven flush to the soil surface. #### Installation on Slopes Installation should be in accordance with the manufacturer's recommendations. In general, these will be as follows: - Begin at the top of the slope and anchor the blanket in a 6 in. deep by 6 in. wide trench. Backfill trench and tamp earth firmly. - Unroll blanket down slope in the direction of water flow. - Overlap the edges of adjacent parallel rolls 2 to 3 in. and staple every 3 ft. - When blankets must be spliced, place blankets end over end (shingle style) with 6 in. overlap. Staple through overlapped area, approximately 12 in. apart. - Lay blankets loosely and maintain direct contact with the soil. Do not stretch. - Staple blankets sufficiently to anchor blanket and maintain contact with the soil. Staples should be placed down the center and staggered with the staples placed along the edges. Steep slopes, 1:1 (H:V) to 2:1 (H:V), require a minimum of 2 staples/yd². Moderate slopes, 2:1 (H:V) to 3:1 (H:V), require a minimum of 1 ½ staples/yd². #### Installation in Channels Installation should be in accordance with the manufacturer's recommendations. In general, these will be as follows: - Dig initial anchor trench 12 in. deep and 6 in. wide across the channel at the lower end of the project area. - Excavate intermittent check slots, 6 in. deep and 6 in. wide across the channel at 25 to 30 ft intervals along the channels. - Cut longitudinal channel anchor trenches 4 in. deep and 4 in. wide along each side of the installation to bury edges of matting, whenever possible extend matting 2 to 3 in. above the crest of the channel side slopes. - Beginning at the downstream end and in the center of the channel, place the initial end of the first roll in the anchor trench and secure with fastening devices at 12 in. intervals. Note: matting will initially be upside down in anchor trench. - In the same manner, position adjacent rolls in anchor trench, overlapping the preceding roll a minimum of 3 in. - Secure these initial ends of mats with anchors at 12 in. intervals, backfill and compact soil. - Unroll center strip of matting upstream. Stop at next check slot or terminal anchor trench. Unroll adjacent mats upstream in similar fashion, maintaining a 3 in. overlap. - Fold and secure all rolls of matting snugly into all transverse check slots. Lay mat in the bottom of the slot then fold back against itself. Anchor through both layers of mat at 12 in. intervals, then backfill and compact soil. Continue rolling all mat widths upstream to the next check slot or terminal anchor trench. - Alternate method for non-critical installations: Place two rows of anchors on 6 in. centers at 25 to 30 ft. intervals in lieu of excavated check slots. - Staple shingled lap spliced ends a minimum of 12 in. apart on 12 in. intervals. - Place edges of outside mats in previously excavated longitudinal slots; anchor using prescribed staple pattern, backfill, and compact soil. - Anchor, fill, and compact upstream end of mat in a 12 in. by 6 in. terminal trench. - Secure mat to ground surface using U-shaped wire staples, geotextile pins, or wooden stakes. - Seed and fill turf reinforcement matting with soil, if specified. # Soil Filling (if specified for turf reinforcement) - Always consult the manufacturer's recommendations for installation. - Do not drive tracked or heavy equipment over mat. - Avoid any traffic over matting if loose or wet soil conditions exist. - Use shovels, rakes, or brooms for fine grading and touch up. - Smooth out soil filling just exposing top netting of mat. # Temporary Soil Stabilization Removal Temporary soil stabilization removed from the site of the work must be disposed of if necessary. #### Costs Relatively high compared to other BMPs. Biodegradable materials: \$0.50 - \$0.57/yd². Permanent materials: \$3.00 - \$4.50/yd². Staples: \$0.04 - \$0.05/staple. Approximate costs for installed materials are shown below: | Rolled | Installed
Cost per Acre | | |-------------------|--------------------------------|----------| | | Jute Mesh | \$6,500 | | | Curled Wood Fiber | \$10,500 | | | Straw | \$8,900 | | Biodegradable | Wood Fiber | \$8,900 | | | Coconut Fiber | \$13,000 | | | Coconut Fiber Mesh | \$31,200 | | | Straw Coconut Fiber | \$10,900 | | | Plastic Netting | \$2,000 | | | Plastic Mesh | \$3,200 | | Non-Biodegradable | Synthetic Fiber with Netting | \$34,800 | | | Bonded Synthetic Fibers | \$50,000 | | | Combination with Biodegradable | \$32,000 | Source: Caltrans Guidance for Soil Stabilization for Temporary Slopes, Nov. 1999 # Inspection and Maintenance - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season, and at two-week intervals during the non-rainy season. - Inspect BMPs subject to non-stormwater discharges daily while non-stormwater discharges occur. - Areas where erosion is evident shall be repaired and BMPs reapplied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require reapplication of BMPs. - If washout or breakage occurs, re-install the material after repairing the damage to the slope or channel. - Make sure matting is uniformly in contact with the soil. - Check that all the lap joints are secure. - Check that staples are flush with the ground. - Check that disturbed areas are seeded. ### References Guides for Erosion and Sediment Controls in California, USDA Soils Conservation Service, January 1991. National Management Measures to Control Nonpoint Source Pollution from Urban Areas, United States Environmental Protection Agency, 2002. Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999 Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992. Water Quality Management Plan for The Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988. #### NOTES: - 1. Slope surface shall be free of rocks, clods, sticks and grass. Mats/blankets shall have good soil contact. - 2. Lay blankets loosely and
stake or staple to maintain direct contact with the soil. Do not stretch. - 3. Install per manufacturer's recommendations # TYPICAL INSTALLATION DETAIL #### NOTES: - 1. Check slots to be constructed per manufacturers specifications. - Staking or stapling layout per manufacturers specifications. Install per manufacturer's recommendations # TYPICAL INSTALLATION DETAIL # **Objectives** | EC | Erosion Control | × | |----|---|--------------| | SE | Sediment Control | \checkmark | | TR | Tracking Control | | | WE | Wind Erosion Control | | | NS | Non-Stormwater Management Control | | | WM | Waste Management and
Materials Pollution Control | | #### Legend: | ☑ Primar | y Objective | |----------|-------------| |----------|-------------| # ☑ Secondary Objective # **Description and Purpose** A sandbag barrier is a series of sand-filled bags placed on a level contour to intercept sheet flows. Sandbag barriers pond sheet flow runoff, allowing sediment to settle out. # **Suitable Applications** Sandbag barriers may be suitable: - As a linear sediment control measure: - Below the toe of slopes and erodible slopes - As sediment traps at culvert/pipe outlets - Below other small cleared areas - Along the perimeter of a site - Down slope of exposed soil areas - Around temporary stockpiles and spoil areas - Parallel to a roadway to keep sediment off paved areas - Along streams and channels - As linear erosion control measure: - Along the face and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow # **Targeted Constituents** $\overline{\mathbf{V}}$ Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** SE-1 Silt Fence SE-5 Fiber Rolls SE-6 Gravel Bag Berm SE-9 Straw Bale Barrier - At the top of slopes to divert runoff away from disturbed slopes - As check dams across mildly sloped construction roads #### Limitations - It is necessary to limit the drainage area upstream of the barrier to 5 acres. - Degraded sandbags may rupture when removed, spilling sand. - Installation can be labor intensive. - Barriers may have limited durability for long-term projects. - When used to detain concentrated flows, maintenance requirements increase. - Burlap should not be used for sandbags. # **Implementation** #### General A sandbag barrier consists of a row of sand-filled bags placed on a level contour. When appropriately placed, a sandbag barrier intercepts and slows sheet flow runoff, causing temporary ponding. The temporary ponding provides quiescent conditions allowing sediment to settle. While the sand-filled bags are porous, the fine sand tends to quickly plug with sediment, limiting the rate of flow through the barrier. If a porous barrier is desired, consider SE-1, Silt Fence, SE-5, Fiber Rolls, SE-6, Gravel Bag Berms, or SE-9, Straw Bale Barriers. Sandbag barriers also interrupt the slope length and thereby reduce erosion by reducing the tendency of sheet flows to concentrate into rivulets which erode rills, and ultimately gullies, into disturbed, sloped soils. Sandbag barriers are similar to ground bag berms, but less porous. # Design and Layout - Locate sandbag barriers on a level contour. - Slopes between 20:1 and 2:1 (H:V): Sandbags should be placed at a maximum interval of 50 ft (a closer spacing is more effective), with the first row near the slope toe. - Slopes 2:1 (H:V) or steeper: Sandbags should be placed at a maximum interval of 25 ft (a closer spacing is more effective), with the first row placed near the slope toe. - Turn the ends of the sandbag barrier up slope to prevent runoff from going around the barrier. - Allow sufficient space up slope from the barrier to allow ponding, and to provide room for sediment storage. - For installation near the toe of the slope, consider moving the barrier away from the slope toe to facilitate cleaning. To prevent flow behind the barrier, sandbags can be placed perpendicular to the barrier to serve as cross barriers. - Drainage area should not exceed 5 acres. - Stack sandbags at least three bags high. - Butt ends of bags tightly. - Overlapp butt joints of row beneath with each successive row. - Use a pyramid approach when stacking bags. - In non-traffic areas - Height = 18 in. maximum - Top width = 24 in. minimum for three or more layer construction - Side slope = 2:1 or flatter - In construction traffic areas - Height = 12 in. maximum - Top width = 24 in. minimum for three or more layer construction. - Side slopes = 2:1 or flatter. #### Materials - **Sandbag Material:** Sandbag should be woven polypropylene, polyethylene or polyamide fabric, minimum unit weight of 4 ounces/yd², Mullen burst strength exceeding 300 lb/in² in conformance with the requirements in ASTM designation D3786, and ultraviolet stability exceeding 70% in conformance with the requirements in ASTM designation D4355. Use of burlap may not acceptable in some jurisdictions. - **Sandbag Size:** Each sand-filled bag should have a length of 18 in., width of 12 in., thickness of 3 in., and mass of approximately 33 lbs. Bag dimensions are nominal, and may vary based on locally available materials. - Fill Material: All sandbag fill material should be non-cohesive, Class 1 or Class 2 permeable material free from clay and deleterious material. #### Costs Sandbag barriers are more costly, but typically have a longer useful life than other barriers. Empty sandbags cost \$0.25 - \$0.75. Average cost of fill material is \$8 per yd³. Pre-filled sandbags are more expensive at \$1.50 - \$2.00 per bag. #### Inspection and Maintenance - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Sandbags exposed to sunlight will need to be replaced every two to three months due to degradation of the bags. - Reshape or replace sandbags as needed. - Repair washouts or other damage as needed. - Sediment that accumulates in the BMP must be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height. Sediment removed during maintenance may be incorporated into earthwork on the site or disposed at an appropriate location. - Remove sandbags when no longer needed. Remove sediment accumulation, and clean, regrade, and stabilize the area. ### References Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. NOTES - Construct the length of each reach so that the change in base elevation along the reach does not exceed 1/2 the height of the linear barrier. In no case shall the reach length exceed 500'. - Place sandbags tight - Dimension may vary to fit field condition. - 4. Sandbag barrier shall be a minimum of 3 bags high. - 5. The end of the barrier shall be turned up slope. - 6. Cross barriers shall be a min of 1/2 and a max of 2/3 the height of - 7. Sandbag rows and layers shall be staggered to eliminate gaps. Silt Fence SE-1 # **Objectives** | EC | Erosion Control | | |-------|----------------------|--------------| | SE | Sediment Control | \checkmark | | TR | Tracking Control | | | WE | Wind Erosion Control | | | NS | Non-Stormwater | | | 145 | Management Control | | | 16/5/ | Waste Management and | | Materials Pollution Control #### Legend: WM - Primary Objective - Secondary Objective ## **Description and Purpose** A silt fence is made of a filter fabric that has been entrenched, attached to supporting poles, and sometimes backed by a plastic or wire mesh for support. The silt fence detains sediment-laden water, promoting sedimentation behind the fence. #### Suitable Applications Silt fences are suitable for perimeter control, placed below areas where sheet flows discharge from the site. They should also be used as interior controls below disturbed areas where runoff may occur in the form of sheet and rill erosion. Silt fences are generally ineffective in locations where the flow is concentrated and are only applicable for sheet or overland flows. Silt fences are most effective when used in combination with erosion controls. Suitable applications include: - Along the perimeter of a project. - Below the toe or down slope of exposed and erodible slopes. - Along streams and channels. - Around temporary spoil areas and stockpiles. - Below other small cleared areas. #### Limitations Do not use in streams, channels, drain inlets, or anywhere flow is concentrated. ## **Targeted Constituents** $\sqrt{}$ Sediment **Nutrients** Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** SE-5 Fiber Rolls SE-6 Gravel Bag Berm SE-8 Sandbag Barrier SE-9 Straw Bale Barrier SE-1 Silt Fence - Do not use in locations where ponded water may cause flooding. - Do not place fence on a slope, or across any contour line. If not installed at the same elevation throughout, silt fences will create erosion. - Filter fences will create a temporary sedimentation pond on the upstream side of the fence and may cause temporary flooding. Fences not constructed on a level contour will be overtopped by concentrated flow resulting in failure of the filter fence. - Improperly installed fences are subject to failure from undercutting, overlapping, or collapsing. - Not effective unless trenched and keyed in. - Not intended for use as mid-slope protection on slopes greater than 4:1 (H:V). - Do not allow water depth to exceed 1.5 ft at any point. #### **Implementation** #### General A silt fence is a temporary sediment barrier consisting of filter fabric stretched across and attached to supporting posts, entrenched, and, depending upon the strength of fabric used, supported with plastic or wire mesh fence. Silt fences trap sediment by intercepting and detaining small amounts of sediment-laden
runoff from disturbed areas in order to promote sedimentation behind the fence. Silt fences are preferable to straw bale barriers in many cases. Laboratory work at the Virginia Highway and Transportation Research Council has shown that silt fences can trap a much higher percentage of suspended sediments than can straw bales. While the failure rate of silt fences is lower than that of straw bale barriers, there are many instances where silt fences have been improperly installed. The following layout and installation guidance can improve performance and should be followed: - Use principally in areas where sheet flow occurs. - Don't use in streams, channels, or anywhere flow is concentrated. Don't use silt fences to divert flow. - Don't use below slopes subject to creep, slumping, or landslides. - Select filter fabric that retains 85% of soil by weight, based on sieve analysis, but that is not finer than an equivalent opening size of 70. - Install along a level contour, so water does not pond more than 1.5 ft at any point along the silt fence. - The maximum length of slope draining to any point along the silt fence should be 200 ft or less. - The maximum slope perpendicular to the fence line should be 1:1. Silt Fence SE-1 Provide sufficient room for runoff to pond behind the fence and to allow sediment removal equipment to pass between the silt fence and toes of slopes or other obstructions. About 1200 ft² of ponding area should be provided for every acre draining to the fence. - Turn the ends of the filter fence uphill to prevent stormwater from flowing around the fence. - Leave an undisturbed or stabilized area immediately down slope from the fence where feasible. - Silt fences should remain in place until the disturbed area is permanently stabilized. ## Design and Layout Selection of a filter fabric is based on soil conditions at the construction site (which affect the equivalent opening size (EOS) fabric specification) and characteristics of the support fence (which affect the choice of tensile strength). The designer should specify a filter fabric that retains the soil found on the construction site yet that it has openings large enough to permit drainage and prevent clogging. The following criteria is recommended for selection of the equivalent opening size: - 1. If 50 percent or less of the soil, by weight, will pass the U.S. Standard Sieve No. 200, select the EOS to retain 85 % of the soil. The EOS should not be finer than EOS 70. - 2. For all other soil types, the EOS should be no larger than the openings in the U.S. Standard Sieve No. 70 except where direct discharge to a stream, lake, or wetland will occur, then the EOS should be no larger than Standard Sieve No. 100. To reduce the chance of clogging, it is preferable to specify a fabric with openings as large as allowed by the criteria. No fabric should be specified with an EOS smaller than U.S. Standard Sieve No. 100. If 85% or more of a soil, by weight, passes through the openings in a No. 200 sieve, filter fabric should not be used. Most of the particles in such a soil would not be retained if the EOS was too large and they would clog the fabric quickly if the EOS were small enough to capture the soil. The fence should be supported by a plastic or wire mesh if the fabric selected does not have sufficient strength and bursting strength characteristics for the planned application (as recommended by the fabric manufacturer). Filter fabric material should contain ultraviolet inhibitors and stabilizers to provide a minimum of six months of expected usable construction life at a temperature range of 0 °F to 120 °F. - Layout in accordance with attached figures. - For slopes steeper than 2:1 (H:V) and that contain a high number of rocks or large dirt clods that tend to dislodge, it may be necessary to install additional protection immediately adjacent to the bottom of the slope, prior to installing silt fence. Additional protection may be a chain link fence or a cable fence. - For slopes adjacent to sensitive receiving waters or Environmentally Sensitive Areas (ESAs), silt fence should be used in conjunction with erosion control BMPs. SE-1 Silt Fence #### Materials Silt fence fabric should be woven polypropylene with a minimum width of 36 in. and a minimum tensile strength of 100 lb force. The fabric should conform to the requirements in ASTM designation D4632 and should have an integral reinforcement layer. The reinforcement layer should be a polypropylene, or equivalent, net provided by the manufacturer. The permittivity of the fabric should be between 0.1 sec⁻¹ and 0.15 sec⁻¹ in conformance with the requirements in ASTM designation D4491. - Wood stakes should be commercial quality lumber of the size and shape shown on the plans. Each stake should be free from decay, splits or cracks longer than the thickness of the stake or other defects that would weaken the stakes and cause the stakes to be structurally unsuitable. - Staples used to fasten the fence fabric to the stakes should be not less than 1.75 in. long and should be fabricated from 15 gauge or heavier wire. The wire used to fasten the tops of the stakes together when joining two sections of fence should be 9 gauge or heavier wire. Galvanizing of the fastening wire will not be required. - There are new products that may use prefabricated plastic holders for the silt fence and use bar reinforcement instead of wood stakes. If bar reinforcement is used in lieu of wood stakes, use number four or greater bar. Provide end protection for any exposed bar reinforcement. #### **Installation Guidelines** Silt fences are to be constructed on a level contour. Sufficient area should exist behind the fence for ponding to occur without flooding or overtopping the fence. - A trench should be excavated approximately 6 in. wide and 6 in. deep along the line the proposed silt fence. - Bottom of the silt fence should be keyed-in a minimum of 12 in. - Posts should be spaced a maximum of 6 ft apart and driven securely into the ground a minimum of 18 in. or 12 in. below the bottom of the trench. - When standard strength filter fabric is used, a plastic or wire mesh support fence should be fastened securely to the upslope side of posts using heavy—duty wire staples at least 1 in. long. The mesh should extend into the trench. When extra-strength filter fabric and closer post spacing are used, the mesh support fence may be eliminated. Filter fabric should be purchased in a long roll, and then cut to the length of the barrier. When joints are necessary, filter cloth should be spliced together only at a support post, with a minimum 6 in. overlap and both ends securely fastened to the post. - The trench should be backfilled with compacted native material. - Construct silt fences with a setback of at least 3 ft from the toe of a slope. Where a silt fence is determined to be not practicable due to specific site conditions, the silt fence may be constructed at the toe of the slope, but should be constructed as far from the toe of the slope as practicable. Silt fences close to the toe of the slope will be less effective and difficult to maintain. Silt Fence SE-1 Construct the length of each reach so that the change in base elevation along the reach does not exceed 1/3 the height of the barrier; in no case should the reach exceed 500 ft. #### Costs Average annual cost for installation and maintenance (assumes 6 month useful life): \$7 per lineal foot (\$850 per drainage acre). Range of cost is \$3.50 - \$9.10 per lineal foot. #### **Inspection and Maintenance** - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Repair undercut silt fences. - Repair or replace split, torn, slumping, or weathered fabric. The lifespan of silt fence fabric is generally 5 to 8 months. - Silt fences that are damaged and become unsuitable for the intended purpose should be removed from the site of work, disposed of, and replaced with new silt fence barriers. - Sediment that accumulates in the BMP must be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height. Sediment removed during maintenance may be incorporated into earthwork on the site or disposed at an appropriate location. - Silt fences should be left in place until the upstream area is permanently stabilized. Until then, the silt fence must be inspected and maintained. - Holes, depressions, or other ground disturbance caused by the removal of the silt fences should be backfilled and repaired. #### References Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995. National Management Measures to Control Nonpoint Source Pollution from Urban Areas, United States Environmental Protection Agency, 2002. Proposed Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters, Work Group-Working Paper, USEPA, April 1992. Sedimentation and Erosion Control Practices, and Inventory of Current Practices (Draft), UESPA, 1990. Southeastern Wisconsin Regional Planning Commission (SWRPC). Costs of Urban Nonpoint Source Water Pollution Control Measures. Technical Report No. 31. Southeastern Wisconsin Regional Planning Commission, Waukesha, WI. 1991 Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. SE-1 Silt Fence Stormwater Management Manual for The Puget Sound Basin, Washington State Department of Ecology, Public Review Draft, 1991. U.S. Environmental Protection Agency (USEPA). Stormwater Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices. U.S. Environmental Protection Agency, Office of Water, Washington, DC, 1992. Water Quality
Management Plan for the Lake Tahoe Region, Volume II, Handbook of Management Practices, Tahoe Regional Planning Agency, November 1988. **Silt Fence** SE-1 Cross barrier (See note 10) ú NOTES Ö Fiber Rolls SE-5 # Objectives EC Erosion Control SE Sediment Control TR Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control www Waste Management and Materials Pollution Control #### Legend: ☑ Primary Objective ☑ Secondary Objective ## **Description and Purpose** A fiber roll consists of straw, flax, or other similar materials bound into a tight tubular roll. When fiber rolls are placed at the toe and on the face of slopes, they intercept runoff, reduce its flow velocity, release the runoff as sheet flow, and provide removal of sediment from the runoff. By interrupting the length of a slope, fiber rolls can also reduce erosion. ## **Suitable Applications** Fiber rolls may be suitable: - Along the toe, top, face, and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow - At the end of a downward slope where it transitions to a steeper slope - Along the perimeter of a project - As check dams in unlined ditches - m Down-slope of exposed soil areas - Around temporary stockpiles ## Limitations Fiber rolls are not effective unless trenched ## **Targeted Constituents** \square Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics #### Potential Alternatives SE-1 Sift Fence SE-6 Gravel Bag Berm SE-8 Sandbag Barrier SE-9 Straw Bale Barrier SE-5 Fiber Rolls - Fiber rolls at the toe of slopes greater than 5:1 (H:V) should be a minimum of 20 in. diameter or installations achieving the same protection (i.e. stacked smaller diameter fiber rolls, etc.). - Difficult to move once saturated. - If not properly staked and trenched in, fiber rolls could be transported by high flows. - Fiber rolls have a very limited sediment capture zone. - Fiber rolls should not be used on slopes subject to creep, slumping, or landslide. ## **Implementation** #### Fiber Roll Materials Fiber rolls should be either prefabricated rolls or rolled tubes of erosion control blanket. ## Assembly of Field Rolled Fiber Roll - Roll length of erosion control blanket into a tube of minimum 8 in. diameter. - Bind roll at each end and every 4 ft along length of roll with jute-type twine. #### Installation - Locate fiber rolls on level contours spaced as follows: - Slope inclination of 4:1 (H:V) or flatter: Fiber rolls should be placed at a maximum interval of 20 ft. - Slope inclination between 4:1 and 2:1 (H:V): Fiber Rolls should be placed at a maximum interval of 15 ft. (a closer spacing is more effective). - Slope inclination 2:1 (H:V) or greater: Fiber Rolls should be placed at a maximum interval of 10 ft. (a closer spacing is more effective). - Turn the ends of the fiber roll up slope to prevent runoff from going around the roll. - Stake fiber rolls into a 2 to 4 in. deep trench with a width equal to the diameter of the fiber roll. - Drive stakes at the end of each fiber roll and spaced 4 ft maximum on center. - Use wood stakes with a nominal classification of 0.75 by 0.75 in. and minimum length of 24 in. - If more than one fiber roll is placed in a row, the rolls should be overlapped, not abutted. #### Removal Fiber rolls are typically left in place. Fiber Rolls SE-5 If fiber rolls are removed, collect and dispose of sediment accumulation, and fill and compact holes, trenches, depressions or any other ground disturbance to blend with adjacent ground. #### Costs Material costs for fiber rolls range from \$20 - \$30 per 25 ft roll. #### **Inspection and Maintenance** - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Repair or replace split, torn, unraveling, or slumping fiber rolls. - If the fiber roll is used as a sediment capture device, or as an erosion control device to maintain sheet flows, sediment that accumulates in the BMP must be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when sediment accumulation reaches one-half the designated sediment storage depth, usually one-half the distance between the top of the fiber roll and the adjacent ground surface. Sediment removed during maintenance may be incorporated into earthwork on the site of disposed at an appropriate location. - If fiber rolls are used for erosion control, such as in a mini check dam, sediment removal should not be required as long as the system continues to control the grade. Sediment control BMPs will likely be required in conjunction with this type of application. #### References Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. ENTRENCHMENT DETAIL N.T.S. M × $\overline{\mathbf{V}}$ ## **Description and Purpose** Hydraulic mulch consists of applying a mixture of shredded wood fiber or a hydraulic matrix, and a stabilizing emulsion or tackifier with hydro-mulching equipment, which temporarily protects exposed soil from erosion by raindrop impact or wind. ## **Suitable Applications** Hydraulic mulch is suitable for soil disturbed areas requiring temporary protection until permanent stabilization is established, and disturbed areas that will be re-disturbed following an extended period of inactivity. ## Limitations Wood fiber hydraulic mulches are generally short lived and need 24 hours to dry before rainfall occurs to be effective. May require a second application in order to remain effective for an entire rainy season. ## **Implementation** - Prior to application, roughen embankment and fill areas by rolling with a crimping or punching type roller or by track walking. Track walking shall only be used where other methods are impractical. - To be effective, hydraulic matrices require 24 hours to dry before rainfall occurs. - Avoid mulch over spray onto roads, sidewalks, drainage channels, existing vegetation, etc. ## **Objectives** Erosion Control EC SE Sediment Control TR Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM Materials Pollution Control Leaend: Primary Objective Secondary Objective ## **Targeted Constituents** Sediment **Nutrients** Trash Metals Bacteria Oil and Grease Organics ## **Potential Alternatives** EC-4 Hydroseeding EC-5 Soil Binders EC-6 Straw Mulch EC-7 Geotextiles and Mats EC-8 Wood Mulching Paper based hydraulic mulches alone shall not be used for erosion control. ## Hydraulic Mulches Wood fiber mulch can be applied alone or as a component of hydraulic matrices. Wood fiber applied alone is typically applied at the rate of 2,000 to 4,000 lb/acre. Wood fiber mulch is manufactured from wood or wood waste from lumber mills or from urban sources. #### Hydraulic Matrices Hydraulic matrices include a mixture of wood fiber and acrylic polymer or other tackifier as binder. Apply as a liquid slurry using a hydraulic application machine (i.e., hydro seeder) at the following minimum rates, or as specified by the manufacturer to achieve complete coverage of the target area: 2,000 to 4,000 lb/acre wood fiber mulch, and 5 to 10% (by weight) of tackifier (acrylic copolymer, guar, psyllium, etc.) #### Bonded Fiber Matrix Bonded fiber matrix (BFM) is a hydraulically applied system of fibers and adhesives that upon drying forms an erosion resistant blanket that promotes vegetation, and prevents soil erosion. BFMs are typically applied at rates from 3,000 lb/acre to 4,000 lb/acre based on the manufacturer's recommendation. A biodegradable BFM is composed of materials that are 100% biodegradable. The binder in the BFM should also be biodegradable and should not dissolve or disperse upon re-wetting. Typically, biodegradable BFMs should not be applied immediately before, during or immediately after rainfall if the soil is saturated. Depending on the product, BFMs typically require 12 to 24 hours to dry and become effective. #### Costs Average cost for installation of wood fiber mulch is \$900/acre. Average cost for installation of BFM is \$5,500/acre. #### **Inspection and Maintenance** - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Areas where erosion is evident shall be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs. - Maintain an unbroken, temporary mulched ground cover throughout the period of construction when the soils are not being reworked. #### References Controlling Erosion of Construction Sites Agricultural Information #347, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) (formerly Soil Conservation Service – SCS). Guides for Erosion and Sediment Control in California, USDA Soils Conservation Service, January 1991. Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995. Sedimentation and Erosion Control, An Inventory of Current Practices Draft, US EPA, April 1990. Soil Erosion by Water, Agriculture Information Bulletin #513, U.S. Department of Agriculture, Soil Conservation Service. Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999 Stormwater Management of the Puget Sound Basin, Technical Manual, Publication #91-75, Washington State Department of Ecology, February 1992. Water Quality Management Plan for the Lake Tahoe Region, Volume II, Handbook of
Management Practices, Tahoe Regional Planning Agency, November 1988. ## **Objectives** - EC Erosion Control - SE Sediment Control - TR Tracking Control - WE Wind Erosion Control - NS Non-Stormwater Management Control - Waste Management and Materials Pollution Control #### Legend: - Primary Objective - Secondary Objective ## **Description and Purpose** Soil binders consist of applying and maintaining a soil stabilizer to exposed soil surfaces. Soil binders are materials applied to the soil surface to temporarily prevent water induced erosion of exposed soils on construction sites. Soil binders also prevent wind erosion. ## **Suitable Applications** Soil binders are typically applied to disturbed areas requiring short term temporary protection. Because soil binders can often be incorporated into the work, they are a good alternative to mulches in areas where grading activities will soon resume. Soil binders are also suitable for use on stockpiles. #### Limitations - Soil binders are temporary in nature and may need reapplication. - Soil binders require a minimum curing time until fully effective, as prescribed by the manufacturer. Curing time may be 24 hours or longer. Soil binders may need reapplication after a storm event. - Soil binders will generally experience spot failures during heavy rainfall events. If runoff penetrates the soil at the top of a slope treated with a soil binder, it is likely that the runoff will undercut the stabilized soil layer and discharge at a point further down slope. ## **Targeted Constituents** Sediment M Nutrients Trash Metals Bacteria 011 --- 1 0 -- -- Oil and Grease Organics ## **Potential Alternatives** EC-3 Hydraulic Mulch EC-4 Hydroseeding EC-6 Straw Mulch EC-7 Geotextiles and Mats EC-8 Wood Mulching - Soil binders do not hold up to pedestrian or vehicular traffic across treated areas. - Soil binders may not penetrate soil surfaces made up primarily of silt and clay, particularly when compacted. - Some soil binders may not perform well with low relative humidity. Under rainy conditions, some agents may become slippery or leach out of the soil. - Soil binders may not cure if low temperatures occur within 24 hours of application. - The water quality impacts of soil binders are relatively unknown and some may have water quality impacts due to their chemical makeup. - A sampling and analysis plan must be incorporated into the SWPPP as soil binders could be a source of non-visible pollutants. #### **Implementation** #### General Considerations - Regional soil types will dictate appropriate soil binders to be used. - A soil binder must be environmentally benign (non-toxic to plant and animal life), easy to apply, easy to maintain, economical, and should not stain paved or painted surfaces. Soil binders should not pollute stormwater. - Some soil binders may not be compatible with existing vegetation. - Performance of soil binders depends on temperature, humidity, and traffic across treated areas. - Avoid over spray onto roads, sidewalks, drainage channels, existing vegetation, etc. ## Selecting a Soil Binder Properties of common soil binders used for erosion control are provided on Table 1 at the end of this BMP. Use Table 1 to select an appropriate soil binder. Refer to WE-1, Wind Erosion Control, for dust control soil binders. Factors to consider when selecting a soil binder include the following: - Suitability to situation Consider where the soil binder will be applied, if it needs a high resistance to leaching or abrasion, and whether it needs to be compatible with any existing vegetation. Determine the length of time soil stabilization will be needed, and if the soil binder will be placed in an area where it will degrade rapidly. In general, slope steepness is not a discriminating factor for the listed soil binders. - Soil types and surface materials Fines and moisture content are key properties of surface materials. Consider a soil binder's ability to penetrate, likelihood of leaching, and ability to form a surface crust on the surface materials. - Frequency of application The frequency of application can be affected by subgrade conditions, surface type, climate, and maintenance schedule. Frequent applications could Soil Binders EC-5 lead to high costs. Application frequency may be minimized if the soil binder has good penetration, low evaporation, and good longevity. Consider also that frequent application will require frequent equipment clean up. #### Plant-Material Based (Short Lived) Binders Guar: Guar is a non-toxic, biodegradable, natural galactomannan based hydrocolloid treated with dispersant agents for easy field mixing. It should be mixed with water at the rate of 11 to 15 lb per 1,000 gallons. Recommended minimum application rates are as follows: #### **Application Rates for Guar Soil Stabilizer** | Slope (H:V): | Flat | 4:1 | 3:1 | 2:1 | 1:1 | |--------------|------|-----|-----|-----|-----| | lb/acre: | 40 | 45 | 50 | 60 | 70 | Psyllium: Psyllium is composed of the finely ground muciloid coating of plantago seeds that is applied as a dry powder or in a wet slurry to the surface of the soil. It dries to form a firm but rewettable membrane that binds soil particles together but permits germination and growth of seed. Psyllium requires 12 to 18 hours drying time. Application rates should be from 80 to 200 lb/acre, with enough water in solution to allow for a uniform slurry flow. Starch: Starch is non-ionic, cold water soluble (pre-gelatinized) granular cornstarch. The material is mixed with water and applied at the rate of 150 lb/acre. Approximate drying time is 9 to 12 hours. ## Plant-Material Based (Long Lived) Binders Pitch and Rosin Emulsion: Generally, a non-ionic pitch and rosin emulsion has a minimum solids content of 48%. The rosin should be a minimum of 26% of the total solids content. The soil stabilizer should be non-corrosive, water dilutable emulsion that upon application cures to a water insoluble binding and cementing agent. For soil erosion control applications, the emulsion is diluted and should be applied as follows: For clayey soil: 5 parts water to 1 part emulsion ■ For sandy soil: 10 parts water to 1 part emulsion Application can be by water truck or hydraulic seeder with the emulsion and product mixture applied at the rate specified by the manufacturer. #### Polymeric Emulsion Blend Binders Acrylic Copolymers and Polymers: Polymeric soil stabilizers should consist of a liquid or solid polymer or copolymer with an acrylic base that contains a minimum of 55% solids. The polymeric compound should be handled and mixed in a manner that will not cause foaming or should contain an anti-foaming agent. The polymeric emulsion should not exceed its shelf life or expiration date; manufacturers should provide the expiration date. Polymeric soil stabilizer should be readily miscible in water, non-injurious to seed or animal life, non-flammable, should provide surface soil stabilization for various soil types without totally inhibiting water infiltration, and should not re-emulsify when cured. The applied compound should air cure within a maximum of 36 to 48 hours. Liquid copolymer should be diluted at a rate of 10 parts water to 1 part polymer and the mixture applied to soil at a rate of 1,175 gallons/acre. Liquid Polymers of Methacrylates and Acrylates: This material consists of a tackifier/sealer that is a liquid polymer of methacrylates and acrylates. It is an aqueous 100% acrylic emulsion blend of 40% solids by volume that is free from styrene, acetate, vinyl, ethoxylated surfactants or silicates. For soil stabilization applications, it is diluted with water in accordance with manufacturer's recommendations, and applied with a hydraulic seeder at the rate of 20 gallons/acre. Drying time is 12 to 18 hours after application. Copolymers of Sodium Acrylates and Acrylamides: These materials are non-toxic, dry powders that are copolymers of sodium acrylate and acrylamide. They are mixed with water and applied to the soil surface for erosion control at rates that are determined by slope gradient: | Slope Gradient
(H:V) | lb/acre | | |-------------------------|-------------|--| | Flat to 5:1 | 3.0 – 5.0 | | | 5:1 to 3:1 | 5.0 – 10.0 | | | 2:2 to 1:1 | 10.0 - 20.0 | | Poly-Acrylamide and Copolymer of Acrylamide: Linear copolymer polyacrylamide is packaged as a dry flowable solid. When used as a stand alone stabilizer, it is diluted at a rate of 11lb/1,000 gal of water and applied at the rate of 5.0 lb/acre. Hydro-Colloid Polymers: Hydro-Colloid Polymers are various combinations of dry flowable poly-acrylamides, copolymers and hydro-colloid polymers that are mixed with water and applied to the soil surface at rates of 55 to 60 lb/acre. Drying times are 0 to 4 hours. #### Cementitious-Based Binders Gypsum: This is a formulated gypsum based product that readily mixes with water and mulch to form a thin protective crust on the soil surface. It is composed of high purity gypsum that is ground, calcined and processed into calcium sulfate hemihydrate with a minimum purity of 86%. It is mixed in a hydraulic seeder and applied at rates 4,000 to 12,000 lb/acre. Drying time is 4 to 8 hours. ## Applying Soil Binders After selecting an appropriate soil binder, the untreated soil surface must be prepared before applying the soil binder. The untreated soil surface must contain sufficient moisture to assist the agent in achieving uniform distribution. In general, the following steps should be followed: - Follow manufacturer's written recommendations for application rates, pre-wetting of application area, and cleaning of equipment after use. - Prior to application, roughen embankment and fill areas. - Consider the drying time for the selected soil binder and apply with sufficient time before anticipated rainfall. Soil binders should not be applied during or immediately before rainfall. - Avoid over spray onto roads, sidewalks, drainage channels, sound walls, existing
vegetation, etc. Soil Binders EC-5 Soil binders should not be applied to frozen soil, areas with standing water, under freezing or rainy conditions, or when the temperature is below 40°F during the curing period. - More than one treatment is often necessary, although the second treatment may be diluted or have a lower application rate. - Generally, soil binders require a minimum curing time of 24 hours before they are fully effective. Refer to manufacturer's instructions for specific cure time. - For liquid agents: - Crown or slope ground to avoid ponding. - Uniformly pre-wet ground at 0.03 to 0.3 gal/yd² or according to manufacturer's recommendations. - Apply solution under pressure. Overlap solution 6 to 12 in. - Allow treated area to cure for the time recommended by the manufacturer; typically at least 24 hours. - Apply second treatment before first treatment becomes ineffective, using 50% application rate. - In low humidities, reactivate chemicals by re-wetting with water at 0.1 to 0.2 gal/yd². #### Costs Costs vary according to the soil stabilizer selected for implementation. The following are approximate costs: | Soil Binder | Cost per Acre | |--|----------------------| | Plant-Material Based (Short Lived) Binders | \$400 | | Plant-Material Based (Long Lived) Binders | \$1,200 | | Polymeric Emulsion Blend Binders | \$400 ⁽¹⁾ | | Cementitious-Based Binders | \$800 | (1) \$1,200 for Acrylic polymers and copolymers Source: Caltrans Guidance for Soil Stabilization for Temporary Slopes, Nov. 1999 #### **Inspection and Maintenance** - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Areas where erosion is evident shall be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs. - Reapply the selected soil binder as needed to maintain effectiveness. #### References Manual of Standards of Erosion and Sediment Control Measures, Association of Bay Area Governments, May 1995. Sedimentation and Erosion Control, An Inventory of Current Practices Draft, US EPA, April 1990. Stormwater Quality Handbooks Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999. Stormwater Management for Construction Activities, Developing Pollution Prevention Plans and Best Management Practices, EPA 832-R-92005; USEPA, April 1992. Soil Binders EC-5 | Table 1 Properties of Soil Binders for Erosion Control | | | | | | |--|--|---|--|--|--| | | Binder Type | | | | | | Evaluation Criteria | Plant Material
Based (Short
Lived) | Plant Material
Based (Long
Lived) | Polymeric
Emulsion Blends | Cementitious-
Based Binders | | | Relative Cost | Low | Low | Low | Low | | | Resistance to Leaching | High | High | Low to Moderate | Moderate | | | Resistance to Abrasion | Moderate | Low | Moderate to High | Moderate to High | | | Longevity | Short to Medium | Medium | Medium to Long | Medium | | | Minimum Curing Time
before Rain | 9 to 18 hours | 19 to 24 hours | 0 to 24 hours | 4 to 8 hours | | | Compatibility with
Existing Vegetation | Good | Poor | Poor | Poor | | | Mode of Degradation | Biodegradable | Biodegradable | Photodegradable/
Chemically
Degradable | Photodegradable/
Chemically
Degradable | | | Labor Intensive | No | No | No | No | | | Specialized Application
Equipment | Water Truck or
Hydraulic
Mulcher | Water Truck or
Hydraulic
Mulcher | Water Truck or
Hydraulic Mulcher | Water Truck or
Hydraulic Mulcher | | | Liquid/Powder | Powder | Liquid | Liquid/Powder | Powder | | | Surface Crusting | Yes, but dissolves
on rewetting | Yes | Yes, but dissolves on rewetting | Yes | | | Clean Up | Water | Water | Water | Water | | | Erosion Control
Application Rate | Varies ⁽¹⁾ | Varies (1) | Varies ⁽¹⁾ | 4,000 to 12,000
lbs/acre | | ⁽¹⁾ See Implementation for specific rates. × $\overline{\mathbf{V}}$ # Description and Purpose Hydroseeding typically consists of applying a mixture of wood fiber, seed, fertilizer, and stabilizing emulsion with hydromulch equipment, to temporarily protect exposed soils from erosion by water and wind. ## **Suitable Applications** Hydroseeding is suitable for soil disturbed areas requiring temporary protection until permanent stabilization is established, and disturbed areas that will be re-disturbed following an extended period of inactivity. ## Limitations - Hydroseeding may be used alone only when there is sufficient time in the season to ensure adequate vegetation establishment and coverage to provide adequate erosion control. Otherwise, hydroseeding must be used in conjunction with mulching (i.e., straw mulch). - Steep slopes are difficult to protect with temporary seeding. - Temporary seeding may not be appropriate in dry periods without supplemental irrigation. - Temporary vegetation may have to be removed before permanent vegetation is applied. - Temporary vegetation is not appropriate for short term inactivity. ## Objectives EC Erosion Control SE Sediment Control TR Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control www. Waste Management and Materials Pollution Control #### Legend: ☑ Primary Objective Secondary Objective ## **Targeted Constituents** Sediment **Nutrients** Trash Metals Bacteria Oil and Grease Organics #### **Potential Alternatives** EC-3 Hydraulic Mulch EC-5 Soil Binders EC-6 Straw Mulch EC-7 Geotextiles and Mats EC-8 Wood Mulching #### **Implementation** In order to select appropriate hydroseeding mixtures, an evaluation of site conditions shall be performed with respect to: Soil conditions - Maintenance requirements - Site topography Sensitive adjacent areas - Season and climate Water availability Vegetation types Plans for permanent vegetation The local office of the U.S.D.A. Natural Resources Conservation Service (NRCS) is an excellent source of information on appropriate seed mixes. The following steps shall be followed for implementation: - Avoid use of hydroseeding in areas where the BMP would be incompatible with future earthwork activities and would have to be removed. - Hydroseeding can be accomplished using a multiple step or one step process. The multiple step process ensures maximum direct contact of the seeds to soil. When the one step process is used to apply the mixture of fiber, seed, etc., the seed rate shall be increased to compensate for all seeds not having direct contact with the soil. - Prior to application, roughen the area to be seeded with the furrows trending along the contours. - Apply a straw mulch to keep seeds in place and to moderate soil moisture and temperature until the seeds germinate and grow. - All seeds shall be in conformance with the California State Seed Law of the Department of Agriculture. Each seed bag shall be delivered to the site sealed and clearly marked as to species, purity, percent germination, dealer's guarantee, and dates of test. The container shall be labeled to clearly reflect the amount of Pure Live Seed (PLS) contained. All legume seed shall be pellet inoculated. Inoculant sources shall be species specific and shall be applied at a rate of 2 lb of inoculant per 100 lb seed. - Commercial fertilizer shall conform to the requirements of the California Food and Agricultural Code. Fertilizer shall be pelleted or granular form. - Follow up applications shall be made as needed to cover weak spots and to maintain adequate soil protection. - Avoid over spray onto roads, sidewalks, drainage channels, existing vegetation, etc. #### Costs Average cost for installation and maintenance may vary from as low as \$300 per acre for flat slopes and stable soils, to \$1600 per acre for moderate to steep slopes and/or erosive soils. | Hydroseeding | | Installed
Cost per Acre | | |---------------|---------------|----------------------------|--| | | Ornamentals | \$400 - \$1600 | | | High Density | Turf Species | \$350 | | | | Bunch Grasses | \$300 - \$1300 | | | Foot Crewing | Annual | \$350 - \$650 | | | Fast Growing | Perennial | \$300 - \$800 | | | Non-Competing | Native | \$300 - \$1600 | | | Non-Compening | Non-Native | \$400 - \$500 | | | Sterile | Cereal Grain | \$500 | | Source: Caltrans Guidance for Soil Stabilization for Temporary Slopes, Nov. 1999 ## **Inspection and Maintenance** - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Areas where erosion is evident shall be repaired and BMPs re-applied as soon as possible. Care should be exercised to minimize the damage to protected areas while making repairs, as any area damaged will require re-application of BMPs. - Where seeds fail to germinate, or they germinate and die, the area must be re-seeded, fertilized, and mulched within the planting season, using not less than half the original application rates. - Irrigation systems, if applicable, should be inspected daily while in use to identify system malfunctions and line breaks. When line breaks are detected, the system must be shut down immediately and breaks repaired before the system is put back into operation. - Irrigation systems shall be inspected for complete coverage and adjusted as needed to maintain complete coverage. #### References Stormwater Quality Handbooks Construction Site Best
Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Guidance Document: Soil Stabilization for Temporary Slopes, State of California Department of Transportation (Caltrans), November 1999. # Objectives | FC | Erosion Control | | |----|---|---| | SE | Sedment Control | V | | TR | Tracking Control | | | WE | Wind Erosion Control | | | NS | Non-Stormwater
Management Control | | | WW | Waste Management and
Materials Pollution Control | | #### Legend: - ☑ Primary Objective - Secondary Objective ## **Description and Purpose** Storm drain inlet protection consists of a sediment filter or an impounding area around or upstream of a storm drain, drop inlet, or curb inlet. Storm drain inlet protection measures temporarily pond runoff before it enters the storm drain, allowing sediment to settle. Some filter configurations also remove sediment by filtering, but usually the ponding action results in the greatest sediment reduction. ## **Suitable Applications** Every storm drain inlet receiving sediment-laden runoff should be protected. #### Limitations - Drainage area should not exceed 1 acre. - Straw bales, while potentially effective, have not produced in practice satisfactory results, primarily due to improper installation. - Requires an adequate area for water to pond without encroaching into portions of the roadway subject to traffic. - Inlet protection usually requires other methods of temporary protection to prevent sediment-laden stormwater and non-stormwater discharges from entering the storm drain system. - Sediment removal may be difficult in high flow conditions or if runoff is heavily sediment laden. If high flow conditions are ## **Targeted Constituents** V ✓ Sediment **Nutrients** Trash Metals Bacteria Oil and Grease **Organics** #### **Potential Alternatives** SE-1 Silt Fence SE-5 Fiber Rolls SE-6 Gravel Bag Berm SE-8 Sandbag Barrier SE-9 Straw Bale Barrier # SE-10 Storm Drain Inlet Protection expected, use other onsite sediment trapping techniques in conjunction with inlet protection. - Frequent maintenance is required. - For drainage areas larger than 1 acre, runoff should be routed to a sediment-trapping device designed for larger flows. See BMPs SE-2, Sediment Basin, and SE-3, Sediment Traps. - Excavated drop inlet sediment traps are appropriate where relatively heavy flows are expected, and overflow capability is needed. ## **Implementation** #### General Large amounts of sediment may enter the storm drain system when storm drains are installed before the upslope drainage area is stabilized, or where construction is adjacent to an existing storm drain. In cases of extreme sediment loading, the storm drain itself may clog and lose a major portion of its capacity. To avoid these problems, it is necessary to prevent sediment from entering the system at the inlets. Inlet control measures presented in this handbook should not be used for inlets draining more than one acre. Runoff from larger disturbed areas should be first routed through SE-2, Sediment Basin or SE-3, Sediment Trap. Different types of inlet protection are appropriate for different applications depending on site conditions and the type of inlet. Inlet protection methods not presented in this handbook should be approved by the local stormwater management agency. #### Design and Layout Identify existing and planned storm drain inlets that have the potential to receive sediment-laden surface runoff. Determine if storm drain inlet protection is needed and which method to use. - Limit upstream drainage area to 1 acre maximum. For larger drainage areas, use SE-2, Sediment Basin, or SE-3, Sediment Trap, upstream of the inlet protection device. - The key to successful and safe use of storm drain inlet protection devices is to know where runoff will pond or be diverted. - Determine the acceptable location and extent of ponding in the vicinity of the drain inlet. The acceptable location and extent of ponding will influence the type and design of the storm drain inlet protection device. - Determine the extent of potential runoff diversion caused by the storm drain inlet protection device. Runoff ponded by inlet protection devices may flow around the device and towards the next downstream inlet. In some cases, this is acceptable; in other cases, serious erosion or downstream property damage can be caused by these diversions. The possibility of runoff diversions will influence whether or not storm drain inlet protection is suitable; and, if suitable, the type and design of the device. - The location and extent of ponding, and the extent of diversion, can usually be controlled through appropriate placement of the inlet protection device. In some cases, moving the inlet protection device a short distance upstream of the actual inlet can provide more efficient sediment control, limit ponding to desired areas, and prevent or control diversions. - Four types of inlet protection are presented below. However, it is recognized that other effective methods and proprietary devices exist and may be selected. - Filter Fabric Fence: Appropriate for drainage basins with less than a 5% slope, sheet flows, and flows under 0.5 cfs. - Excavated Drop Inlet Sediment Trap: An excavated area around the inlet to trap sediment (SE-3). - Gravel bag barrier: Used to create a small sediment trap upstream of inlets on sloped, paved streets. Appropriate for sheet flow or when concentrated flow may exceed 0.5 cfs, and where overtopping is required to prevent flooding. - Block and Gravel Filter: Appropriate for flows greater than 0.5 cfs. - Select the appropriate type of inlet protection and design as referred to or as described in this fact sheet. - Provide area around the inlet for water to pond without flooding structures and property. - Grates and spaces around all inlets should be sealed to prevent seepage of sediment-laden water - Excavate sediment sumps (where needed) 1 to 2 ft with 2:1 side slopes around the inlet. #### Installation - **DI Protection Type 1 Filter Fabric Fence** The filter fabric fence (Type 1) protection is shown in the attached figure. Similar to constructing a silt fence; see BMP SE-1, Silt Fence. Do not place filter fabric underneath the inlet grate since the collected sediment may fall into the drain inlet when the fabric is removed or replaced. - 1. Excavate a trench approximately 6 in. wide and 6 in. deep along the line of the silt fence inlet protection device. - 2. Place 2 in. by 2 in. wooden stakes around the perimeter of the inlet a maximum of 3 ft apart and drive them at least 18 in. into the ground or 12 in. below the bottom of the trench. The stakes must be at least 48 in. - 3. Lay fabric along bottom of trench, up side of trench, and then up stakes. See SE-1, Silt Fence, for details. The maximum silt fence height around the inlet is 24 in. - 4. Staple the filter fabric (for materials and specifications, see SE-1, Silt Fence) to wooden stakes. Use heavy-duty wire staples at least 1 in. in length. - 5. Backfill the trench with gravel or compacted earth all the way around. - DI Protection Type 2 Excavated Drop Inlet Sediment Trap The excavated drop inlet sediment trap (Type 2) is shown in the attached figures. Install filter fabric fence in # SE-10 Storm Drain Inlet Protection accordance with DI Protection Type 1. Size excavated trap to provide a minimum storage capacity calculated at the rate 67 yd3/acre of drainage area. - **DI Protection Type 3 Gravel bag -** The gravel bag barrier (Type 3) is shown in the figures. Flow from a severe storm should not overtop the curb. In areas of high clay and silts, use filter fabric and gravel as additional filter media. Construct gravel bags in accordance with SE-6, Gravel Bag Berm. Gravel bags should be used due to their high permeability. - 1. Use sand bag made of geotextile fabric (not burlap) and fill with 0.75 in. rock or 0.25 in. pea gravel. - 2. Construct on gently sloping street. - 3. Leave room upstream of barrier for water to pond and sediment to settle. - 4. Place several layers of sand bags overlapping the bags and packing them tightly together. - 5. Leave gap of one bag on the top row to serve as a spillway. Flow from a severe storm (e.g., 10 year storm) should not overtop the curb. - **DI Protection Type 4 Block and Gravel Filter** The block and gravel filter (Type 4) is shown in the figures. Block and gravel filters are suitable for curb inlets commonly used in residential, commercial, and industrial construction. - 1. Place hardware cloth or comparable wire mesh with 0.5 in. openings over the drop inlet so that the wire extends a minimum of 1 ft beyond each side of the inlet structure. If more than one strip is necessary, overlap the strips. Place filter fabric over the wire mesh - 2. Place concrete blocks lengthwise on their sides in a single row around the perimeter of the inlet, so that the open ends face outward, not upward. The ends of adjacent blocks should abut. The height of the barrier can be varied, depending on design needs, by stacking combinations of blocks that are 4 in., 8 in., and 12 in. wide. The row of blocks should be at least 12 in. but no greater than 24 in. high. - 3. Place wire mesh over the outside vertical face (open end) of the concrete blocks to prevent stone from being washed through the blocks. Use hardware cloth or comparable wire mesh with 0.5 in. opening. - 4. Pile washed stone against the wire mesh to the top of the blocks. Use 0.75 to 3 in. #### Costs Average annual cost for installation and maintenance (one year useful life) is \$200 per inlet. #### **Inspection and Maintenance** Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Filter Fabric Fences. If the fabric becomes clogged, torn, or degrades, it should be
replaced. Make sure the stakes are securely driven in the ground and are in good shape (i.e., not bent, cracked, or splintered, and are reasonably perpendicular to the ground). Replace damaged stakes. - Gravel Filters. If the gravel becomes clogged with sediment, it must be carefully removed from the inlet and either cleaned or replaced. Since cleaning gravel at a construction site may be difficult, consider using the sediment-laden stone as fill material and put fresh stone around the inlet. Inspect bags for holes, gashes, and snags, and replace bags as needed. Check gravel bags for proper arrangement and displacement. - Sediment that accumulates in the BMP must be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height. Sediment removed during maintenance may be incorporated into earthwork on the site ore disposed at an appropriate location. - Remove storm drain inlet protection once the drainage area is stabilized. - Clean and regrade area around the inlet and clean the inside of the storm drain inlet as it must be free of sediment and debris at the time of final inspection. #### References Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management Manual for The Puget Sound Basin, Washington State Department of Ecology, Public Review Draft, 1991. DI PROTECTION TYPE 1 NOT TO SCALE #### NOTES: - For use in areas where grading has been completed and final soil stabilization and seeding are pending. - 2. Not applicable in paved areas. - 3. Not applicable with concentrated flows. #### Notes - 1. For use in cleared and grubbed and in graded areas. - 2. Shape basin so that longest inflow area faces longest length of trap. - 3. For concentrated flows, shape basin in 2:1 ratio with length oriented towards direction of flow. ## TYPICAL PROTECTION FOR INLET ON SUMP ## TYPICAL PROTECTION FOR INLET ON GRADE #### NOTES: - 1. Intended for short-term use. - 2. Use to inhibit non-storm water flow. - 3. Allow for proper maintenance and cleanup. - 4. Bags must be removed after adjacent operation is completed - 5. Not applicable in areas with high silts and clays without filter fabric. # DI PROTECTION TYPE 3 NOT TO SCALE DI PROTECTION — TYPE 4 NOT TO SCALE